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Analysis of dynamic systems is more time consuming than of static ones due to the
presence of inertia forces which vary in time. Equations of a dynamic system excited by
arbitrary loads result in partial di!erential equations. The spatial part is discretized by the
"nite element method and the temporal part by implicit or explicit integration scheme. The
time integration methods have already proved their e!ectiveness. However, in order to
improve computing time for the resolution and quality of results, we present in this paper,
a semi-analytical method based on an asymptotic method which allows to obtain
a continuous solution for all time. In this method, the displacement "eld is expressed in
power series. From this series, velocity and acceleration are easily computed. The load must
be expressed also in series in the same manner as displacement. To do so, we use the Fourier
integral to obtain an analytical function of an arbitrary load and then, we develop this
function in power series using Taylor series. The dynamic asymptotic method (DAM)
belongs to the conditionally stable-explicit methods. We apply this method in modal space
in order to eliminate higher modes which in#uence the critical time (time segment length).
Through numerical examples, we show better e!ectiveness of the asymptotic method
compared to the Newmark method when we applied those schemes in the modal space.
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1. INTRODUCTION

The asymptotic method (also called perturbation method) has been for a long time an
e$cient way to solve certain kinds of problems in various scienti"c "elds. Its origin goes
back to more than one century. This method was initially used in astronomy [1]. For
example, this technique has been applied to discover the planet Neptune by the French
astronomer Leverrier. In the beginning of the 1930s, Signori [2] has presented a technique
of perturbation to transform a non-linear elastostatic problem in large displacement to
a succession of linear problems. Koiter's Ph.D. thesis was on the stability of structure using
perturbation method. This work has been resumed and supplemented by Budiansky [3]
and Potier-Ferry [4].

The "rst application of the "nite element method with a perturbation technique is due to
Thompson and Walker [5]. They presented a general theory to solve a discrete non-linear
problem by a perturbation method, and they applied it to the equilibrium problem of
0022-460X/01/230475#27 $35.00/0 ( 2001 Academic Press
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a displacement-based "nite element model. Several contributions were then proposed by
HangamK and Kawamata [2], and Connor and Morin [2], concerning in particular the
applications. All this work was reviewed by Gallagher [6] and conclusions were not truly
optimistic for the future of the asymptotic method in a "nite element context.

The "rst interesting combination of the asymptotic method and the "nite element method
was proposed by Damil and Potier-Ferry [7] in a paper dealing with computation in
perturbed bifurcation. Thereafter, Cochelin [2] showed that the asymptotic method could
be used in a satisfactory way to solve problems of non-linear elasticity by using the "nite
element method.

Ammar [8] has extended the use of the asymptotic method to solve large rotations,
non-linear problems where the displacement "eld is not expressed in polynomial form.
Zahrouni [9] has presented numerical asymptotic algorithms to solve elastic shell problems
in large rotations. He has also extended these algorithms to inelastic constitutive law.

Application of the asymptotic method to study the dynamic of structures is very recent.
Fafard et al. [10] have developed a new method based on the asymptotic method to solve
linear dynamic problems which they called dynamic asymptotic method (DAM). This
method is based on the development of displacement, velocity and acceleration, in power
series. The proposed method is conditionally stable because limited series are used. Fafard
et al. [10] have shown that this method was more e$cient than other conditionally stable
explicit methods when it is applied in the modal space. The application of this method was
limited to simple loading like constant load or linear load.

In this paper, we solve linear dynamic problems with arbitrary loading using the
asymptotic method, by using the Fourier integral to obtain the loading as an analytical
function. Using a "nite element discretization scheme in space, the linear dynamic problem
results in a set of ordinary di!erential equations of the form

[M]Mu( (t)N#[C]MuR (t)N#[K]Mu(t)N"MF (t)N, (1)

where [M], [C] and [K] are, respectively, mass, damping and rigidity matrices of the
structure, MuN the nodal displacement vector and a dot denotes di!erentiation with respect
to time t. At this stage, it is obvious that the use of a numerical technique to discretize the
time domain is necessary. Equation (1) can be projected in the modal space using standard
modal superposition techniques. If the full system is conserved, the time domain can be
discretized using the standard Euler, second order explicit, or Newmark-b implicit schemes.
In either case, the resulting discretized system can be written as

[KI ]MuN"MR (t)N Mu (t#Dt)N"Mu (t)N#MDuN, (2)

where [KI ] and MR(t)N are, respectively, the e!ective matrix and the e!ective incremental
load vector. Both de"nition of [KI ] and MR (t)N depend on the integration scheme. The vector
MDuN is the incremental displacement vector to be added to the known solution at the time t,
Mu(t)N, to obtain Mu (t#Dt)N. In all cases, the solution is obtained in an incremental manner
which means that the nodal displacement, velocity and acceleration vectors are known only
at certain points in the time domain (0, Dt, 2Dt,2, nDt, etc.). Unfortunately, explicit
methods are conditionally stable and very small time steps are often needed.
Unconditionally stable implicit schemes permit the use of larger time steps; the size is
governed only by accuracy considerations. Unfortunately, these schemes require a matrix
factorization which means that larger computer core storage is needed and more operations
per time step are required than with the central di!erence scheme. Also, to avoid the aliasing
phenomenon, the time step must be less than or equal to the lowest period which
participates in the response divided by 10 [11]. However, the asymptotic method gives
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a continuous solution as function of time, its time step (time segment length) is computed
automatically and it adapts according to the variation of the loading.

In the following sections, the solution of the transient dynamic problem with an arbitrary
loading is presented. In order to get a polynomial form of loads, we develop the function
obtained by Fourier integral, in Taylor series. Then, we will extend this technique to more
complex problems, in order to be able to treat systems with several degrees of freedom by
the asymptotic method.

2. PRESENTATION OF THE ASYMPTOTIC METHOD IN LINEAR DYNAMICS

2.1. BASIC CONCEPT OF THE ASYMPTOTIC METHOD

The resolution of a dynamic problem with the asymptotic method o!ers the advantage of
expressing displacement and load in power series of time. The velocity and the acceleration
are obtained by time di!erentiation of the displacement series. System (1) being linear with
constant coe$cients, the representation of the solution by a series is valid for any time t if
the load is also representable by a power series. In other words, the expression of
displacement in a series is written as

Mu(t)N"
=
+
j/0

tjMu
j
N. (3)

The vectors Mu
j
N are the unknown vectors independent of time; vectors Mu

0
N and Mu

1
N

represent the initial displacement and the initial velocity vectors respectively.
The "rst and second derivatives are easily computed using the series of Mu(t)N

MuR (t)N"
=
+
j/1

jtj~1Mu
j
N, Mu( (t)N"

=
+
j/2

j ( j!1) tj~2Mu
j
N. (4)

By introducing these series into the equilibrium equations, we can "nd by recursiveness
the unknown vectors Mu

j
N. Obviously, in order to group terms of the same power, the nodal

loading vector must be converted into power series in the same manner as the displacement

MF(t)N"
=
+
j/0

tjMF
j
N, (5)

where vectors MF
j
N contain the coe$cients of the series (5).

By replacing the displacement, the velocity, the acceleration and the loading vectors
according to their respective asymptotic expression, the dynamic equilibrium equations
then becomes

[M]
=
+
j/2

j( j!1)tj~2Mu
j
N#[C]

=
+
j/1

jtj~1Mu
j
N#[K]

=
+
j/0

tjMu
j
N"

=
+
j/0

tjMF
j
N. (6)

By grouping terms of the same power of t in equation (6), we obtain for j"2,2,R the
unknown vectors

Mu
j
N"

1

j ( j!1)
[M]~1(MF

j~2
N!( j!1)[C]Mu

j~1
N![K]Mu

j~2
N). (7)
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Since, in practice, we cannot compute all the terms of the series representing u(t), we
approach the solution by the series truncated at a certain order N:

Mu(t)N"
N
+
j/0

tjMu
j
N. (8)

By introducing this truncated series in the equilibrium equations (1), we obtain the residue

MR (t)N"tN~1MR
N~1

N#tNMR
N
N!

=
+

j/N`1

tjMF
j
N, (9)

where

MR
N~1

N"N[C]Mu
N
N#[K]Mu

N~1
N!MF

N~1
NO0,

MR
N
N"[K]Mu

N
N!MF

N
NO0. (10)

By considering that the loading is well represented by the truncated series +N
j/0

tjMF
j
N the

residue can be approximately estimated by

R (t)+tN~1MR
N~1

N#tNMR
N
N. (11)

Since the vectors MR
N~1

Nand MR
N
N are generally di!erent from zero, the residue will also be

di!erent from zero. Thus, this fact implies that the dynamic equilibrium of the structure will
not be entirely satis"ed. For N "xed, there exists a validity zone of the series beyond which
the solution will not be valid. Consequently, to deduce the full solution for a given problem,
the asymptotic method must be applied segment by segment. In each segment, we should
calculate an error estimator of the solution to compute a critical time length to maintain
a good precision of the approximation with the truncated series.

2.2. AUTOMATIC TIME SEGMENT COMPUTATION

Cochelin [2] has observed that asymptotic solutions incorporating two consecutive
orders are very similar inside a validity zone; then they deviate one from the other at
a certain time when they reach the limit of the validity zone. We can easily estimate this
critical time in the following way:

DDMu(ti
cr
#q)N

order N
!Mu (ti

cr
#q)N

order N~1
DD

DDMu(ti
cr
#q)N

order N
!Mu(ti

cr
)NDD

)e, ti
cr
)q)ti`1

cr
, (12)

where neglecting higher order terms in the denominator of equation (12), we obtain

ti`1
cr

"ti
cr
#Ae

DDMu
1
NDD

DDMu
N
NDDB

1@(N~1)
if DDMu

1
NDDO0. (13)

The vector Mu
1
N corresponds to the velocities at the end of the previous segment, it is related

therefore to the initial conditions of the current time segment. In the case where Mu
1
N is zero,

the critical time segment can be obtained by

ti`1
cr

"ti
cr
#Ae

DDMu
2
NDD

DDMu
N
NDDB

1@(N~2)
. (14)
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2.3. STABILITY STUDY

It is well known that explicit time integration schemes are conditionally stable [12]. The
DAM is an explicit method and thus, is conditionally stable. Stability analysis of this
method has been presented in references [10, 13].

3. TAYLOR DEVELOPMENT OF THE LOADING VECTOR

To solve linear dynamics problems by the asymptotic method, we must express the
loading in power series in the same manner as the displacement "eld. For that purpose, we
will develop the loading vector in a Taylor series in order to obtain a polynomial
representation of the load. However, in dynamic analysis and particularly in seismic
analysis, the loading function is rarely given by an explicit analytical function, which
prevents us to compute its Taylor series explicitly. The most used technique to represent an
arbitrary loading is the transformation using Fourier series. This technique can be easily
applied to periodic loading. If the load is not periodic, we can add at the end of this loading
a zero load, long enough to prevent the recurrence of the load. This technique has been
tested and we "nd that it is less advantageous when compared to the next technique
presented in this paper.

To represent arbitrary non-periodic loads, we use the Fourier integral. Thereafter, we will
extend this technique for more complex problems, in order to be able to treat systems with
several degrees of freedom subjected to an arbitrary loading by the asymptotic method.

3.1. REPRESENTATION OF THE MODAL LOADING BY FOURIER SERIES

A function f (t) de"ned in the interval (!¸, ¸) and given outside this interval by
f (t#2¸)"f (t), has a period of 2¸ (Figure 1). The Fourier series of a 2¸- periodic function
f (t) is de"ned as

f (t)"a
0
#

=
+
n/1

(a
n
cos X

n
t#b

n
sin X

n
t ) with X

n
"nn/¸, (15)

where the Fourier coe$cients a
0
, a

n
and b

n
are (n"1, 2,2)

a
0
"

1

¸ P
L

~L

f (t) dt, a
n
"

2

¸ P
L

~L

f (t) cos X
n
t dt, b

n
"

2

¸ P
L

~L

f (t) sin X
n
t dt. (16)
Figure 1. Periodic function.
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Since the Taylor series of the harmonic functions like the cosinus and the sinus functions are
known, we are able to develop a Taylor series for any combination of harmonic functions.
The Taylor series of the cosinus and sinus functions in the neighborhood of the critical point
t
cr

are

cos(X
n
(t
cr
#q))"cos(X

n
t
cr
)!sin(X

n
t
cr
)
X

n
q

1!
!cos(X

n
t
cr
)
(X

n
q)2

2!

#sin(X
n
t
cr
)
(X

n
q)3

3!
#2 (17)

and

sin(X
n
(t
cr
#q))"sin(X

n
t
cr
)#cos(X

n
t
cr
)
X

n
q

1!
!sin(X

n
t
cr
)
(X

n
q)2

2!

!cos(X
n
t
cr
)
(X

n
q)3

3!
#2. (18)

Replacing these two expressions in the Fourier series (15), we "nd

f (t
cr
#q)"f

0
#f

1
q#f

2
q2#f

3
q3#2 (19)

with

f
0
"a

0
#

=
+
n/1

[a
n
cos(X

n
t
cr
)#b

n
sin(X

n
t
cr
)],

f
i
"A

=
+
n/1

[a
n
cos(X

n
t
cr
)#b

n
sin(X

n
t
cr
)]B

(!1)i@2 (X
n
)i

i !
, i"even,

f
i
"A(!1)(i`1)@2

=
+
n/1

a
n
sin(X

n
t
cr
)#(!1)(i~1)@2

=
+
n/1

b
n
cos(X

n
t
cr
)B

(X
n
)i

i !
, i"odd. (20)

Having the Taylor coe$cients of the loading f (t), we can then compute the coe$cients of
the displacement de"ned by equation (7).

3.2. RESOLUTION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM (s.d.o.f )

To illustrate the application of Fourier series to an undamped forced vibration problem,
we will study a single-degree-of-freedom system. We use an asymptotic development with
30 terms. The tolerance to compute the critical time is equal to 10~4. The data of this
problem are k"4, m"1 and the initial conditions are set to (u

0
"u

1
"0). The load is

a triangular function; we use 15 terms of the Fourier series (n"15) to approximate the
loading. The di!erential equation of the system is the following one:

u(#4u"G
t, t)4,

!t#8, 4)t)8
(21)
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and its analytical solution can be easily obtained:

u (t)"G
0)25t!0)125 sin(2t), t)4,

!0)123 cos(2t!8)#0)268 sin(2t!8)!1
4

t#2, 4)t)8.
(22)

Figure 2 shows that the results obtained with the asymptotic method associated with
Fourier series are practically exact. We can thus say that this approach gives good results.
Furthermore, this approach can be applied to problems of several degrees of freedom with
an arbitrary periodic loading, since the solution of a problem expressed in the modal space
is similar to equation (21). Nevertheless, this technique presents some disadvantages that we
will depict in section 3.4.

3.3. REPRESENTATION OF THE MODAL LOADING BY THE FOURIER INTEGRAL

3.3.1. General case

We want to extend the representation of a non-periodic loading using a similar technique
as in section 3.2. Let us consider the example of an arbitrary non-periodic loading as shown
in Figure 3.

If we want to represent this function by Fourier series, it is necessary to take the period
(2¸) large enough to represent this function as shown in Figure 4. It is obvious that the
repetitive parts can perturb the solution if the total time of the analysis is larger than
the period. To completely eliminate the repetitiveness of the basic loading, we must let the
period (2¸) go up to in"nity.

Let f (t) be a function with a period (2¸) that we can represent by Fourier series as

f (t)"a
0
#

=
+
n/1

(a
n
cos X

n
t#b

n
sin X

n
t). (23)
Figure 2. The single-degree-of-freedom system response using Fourier series: *f*, DAM solution; **,
analytical solution.



Figure 3. Non-periodic function.

Figure 4. A representation of a non-periodic function like a periodic function.
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In order to see what happens when this period approaches in"nity, we replace the
expressions of a

0
, a

n
and b

n
in the above equation and the sum by an integral as follows:

f (t)"P
=

0

[A(X) cos Xt#B(X) sin Xt] dX (24)

with

A (X)"
1

n P
=

~=

f (v) cos Xv dv, B (X)"
1

n P
=

~=

f (v) sin Xv dv. (25)

This is the representation of f (t) by a so-called Fourier integral.

3.3.2. Representation of a linear loading by the Fourier integral

An arbitrary load can be represented by a piecewise linear function; it is a juxtaposition of
linear segments like the one appearing in Figure 5. We can estimate the expression of the
Fourier integral for this interval of time [a, b] and sum all terms of the function.



Figure 5. Linear load.
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By calculating the two integrals (25) for f (t)"at#b and replacing them in equation (24),
the expression of the Fourier integral of f (t) becomes

f (t)"
1

nl
[!a cos(l(t!b))#a cos(l(t!a))!alt Si (l(t!b))

#altSi(l(t!a))!albSi (l(t!b))#albSi(l (t!a))], (26)

where Si (t)":t
0
(sin(x)/x) dx and l is the upper limit of the Fourier integral. As the function

Si(t) cannot be computed explicitly, we used the Chebyshev series [14].
Having obtained the loading expression for a line segment using equation (26), we must

express it in a Taylor series:

f (t
cr
#q)"

=
+
j/0

qj
j!

f (j) (t
cr
), (27)

where upper script ( j) means jth derivative.

3.3.3. Representation of discrete loading by Fourier integral

For a discrete arbitrary loading (Figure 6) made of a set of line segments, equation (26)
is written in the following way:

f (t)"
Np~1
+
i/1

[!a
i
cos(l (t!a

i`1
))#a

i
cos(l(t!a

i
))!a

i
lt Si(l (t!a

i`1
))

#a
i
ltSi (l(t!a

i
))!a

i
lb

i
Si(l (t!a

i`1
))#a

i
lb

i
Si(l(t!a

i
))]/(nl), (28)

where N
p

represents the number of points of the loading curve.

3.3.4. Resolution of a single-degree-of-freedom system

In this example, we will "nd the solution to the problem considered in section 3.2 using
the Fourier integral with an upper limit (l) equal to 5 rad/s. We use the same parameters for
the asymptotic method as those used in section 3.2. Thus, we can compare the results
obtained using the Fourier series to those obtained by using the Fourier integral.

Figure 7 represents the analytical solution and the one obtained by the asymptotic
method using the Fourier integral. We can clearly observe that the two curves are in good



Figure 6. Discrete loading.

Figure 7. The single-degree-of-freedom system response using the Fourier integral:*f*, DAM solution;**,
analytical solution.
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agreement. Then, we conclude that the technique of the Fourier integral can be used with
the asymptotic method for a single-degree-of-freedom system.

3.4. COMPARISON BETWEEN THE FOURIER INTEGRAL AND FOURIER SERIES

As we mentioned in section 3.1, Fourier series are used to represent periodic functions.
When the load is non-periodic, we must take a larger period than the time of analysis of the
problem to avoid the return of the load. However, with the Fourier integral, we can express
any function that it is periodic or not, which represents an advantage.

Besides, the load is generally represented in discrete forms. Using Fourier series to
represent this type of loading, constrains us to compute series with several harmonics for
each line segment representing the load. This approach is time consuming. On the other



TABLE 1

Computing time and critical times

Fourier integral Fourier series Ratio
l"15 rad/s n"15 (1/2)

Relative (CPU) time 0)37 1
Critical time (s) 2)52 1)90 1)33

2)40 1)97 1)22
1)95 1)93 1)01
2)33 2)05 1)14

Mean critical time (s) 2)30 1)96 1)17
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hand, with the Fourier integral, we just have to compute expression (24) for each segment.
To illustrate the advantages of the Fourier integral used with the asymptotic method when
compared to the use of Fourier series, we present in Table 1 some results obtained from the
example presented in sections 3.2 and 3.3.4. We can observe that segments length are larger
using the Fourier integral and the latter is less time consuming than the asymptotic method
using Fourier series.

4. APPLICATIONS WITH SEVERAL DEGREES OF FREEDOM

4.1. VALIDATION AND PERFORMANCES OF THE ASYMPTOTIC METHOD

In this example, we study the frame in Figure 8 subjected to the Pacoima earthquake
(Figure 9) in the horizontal direction. The objective is to demonstrate that the asymptotic
method converges towards the exact solution and that it requires fewer steps than the
Newmark-b integration method to obtain all the solution branches. Thus, the response of
the structure is calculated by both methods: the Newmark-b method (with b"1/4 and 1/6)
and the asymptotic method. We present thereafter the lateral displacement of the node (7)
located at the top of the frame in order to compare those methods. The structural damping
is neglected. The frequency of the upper limit of the Fourier integral is 120 rad/s. We use an
asymptotic development with 29 terms. Each beam and column is meshed with a single
element. The geometry and the physical characteristics of the structure are given in
Figure 8.

We have computed the "rst six relative modal masses of the structure in order to choose
the number of modes that must be included in the response. The "rst three relative modal
masses are 86)79, 10)71 and 2)49%, which account for practically 100%. These "rst three
modes have signi"cant modal masses and thus contribute signi"cantly to the response of
the structure in the modal space [11]. Thus, we will use these "rst three modes for
computing displacements of the structure. For the choice of the time step for the
Newmark-b method, it is recommended to take one equal to the tenth of the smallest period
included in the subspace of the structure [12]; thus, we "nd Dt"0)0065 s. The Pacoima
earthquake was recorded with a time step of 0)02 s. To avoid the aliasing phenomenon (due
to the fact that 0)02/0)0065"3)07), we have taken a time step equal to 0)02/4"0)005 s
(equivalent to ¹

3
/13). For the explicit scheme, the stability criterion [12] is Dt)0)55¹

3
"

0)036 s, and consequently by taking Dt"0)005 s, we will remain inside the stability zone.
The tolerance chosen to compute the critical time of the asymptotic method is 10~9.
Displacement versus time of the node (7) is plotted in Figures 10(a}f ).



Figure 8. Frame subjected to Pacoima earthquake: o"7870 kg/m3, E"2)0]1011 N/m2, I
Beam

"100)0]
10~6 m4, I

Column
"51)6]10~6 m4, A

Beam
"8)0]10~2 m2, A

Column
"6)92]10~2 m2.

Figure 9. Pacoima earthquake recording.

486 N. BERRAHMA-CHEKROUN E¹ A¸.
By examining Figure 10(a) and 10(b), we note that the solutions obtained by the
asymptotic method and the Newmark-b method with explicit and implicit schemes are
identical during the "rst 10 s of the analysis. We also note that the solution calculated by
c
Figure 10. Horizontal displacement of the node (7) computed using DAM and the Newmark method

(Dt"0)005 s): *
3
*, Newmark (b"1/6); *e*, Newmark (b"1/4); **, DAM. (a) 0(time(4; (b)

4(time(10; (c) 10(time(14; (d) 14(time(17; (e) 17(time(19; (f ) 19(time(20.
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Figure 10. Continued.
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using the implicit scheme starts to shift slightly from the two other solutions beyond the
tenth second. The solution obtained with the conditionally stable scheme starts to shift from
the one obtained using the asymptotic method from the 14th second. At the end of the
analysis, we clearly see from Figure 10(f ) that the three solutions are not identical.

In order to check which of the three numerical solutions gives the better approximation
of the exact solution, we decrease the time step of the Newmark-b method for the two
integration schemes to obtain more precise solutions. We note that as we decrease the
time steps, the Newmark-b solutions approach the asymptotic method solution; we thus
deduce that the developed method gave an excellent approximation of the exact solution.
We note that the results obtained by the Newmark-b method with a time step of 0)02 s are
very acceptable from an engineering point of view.

4.2. DYNAMIC STUDY OF A BRIDGE BOX

In this section, we study a concrete bridge subjected to the El-Centro earthquake (May
18, 1940) in its vertical direction (Figure 11). The objective of the analysis is to evaluate the
performance of the asymptotic method compared to the Newmark-b method.

This bridge box has three consecutive continuous spans [15]. Figure 12 shows
dimensions of the three spans. We illustrate in Figure 13 a transversal section of the bridge
and in Figure 14 a plan view. The bridge is meshed with beam "nite elements and shell "nite
elements. The bridge mesh is shown in Figure 15. It contains 1736 elements, 1622 nodes and
9732 degrees of freedom.

The number of modes which must be included in the response has been selected by
computing the relative modal masses of each bridge modes (Figure 16). They are presented
in Table 2. We note from this table that it is the third frequency which has the greatest
modal mass and, thus, it will contribute signi"cantly to the response. Consequently, we will
Figure 11. El-Centro earthquake recording.



Figure 12. Longitudinal section.

Figure 13. Transversal section.

Figure 14. Plan view.
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take the "rst three modes for the computation of the response. We estimate that the modal
analysis gives satisfactory results when the modal masses selected account for at least 90%
of the structure total mass. In our case, we do not take account of this fact since we are
interested more in the numerical aspect of the method than the physical one.

4.3. CHOICE OF THE UPPER LIMIT OF THE FOURIER INTEGRAL

We know that if we underestimate the value of the upper limit in the Fourier integral, we
will generate less accurate results. To determine an acceptable value of this upper limit and
to see the e!ect of this frequency on the response, we have varied this frequency as follows:
30, 40, 60, 90 and 120 rad/s. We have taken 29 terms for the displacement series and
a tolerance of 10~8 for the computing of critical time. The displacement at the center of the
bridge is obtained for the selected upper limit of the Fourier integral (Figure 17).



Figure 15. Bridge grid.

Figure 16. The "rst three modes included in the response: (a) "rst mode, (b) second mode, (c) third mode.
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We observe that the curves obtained with frequencies of 60, 90, 120 rad/s are very close to
each other; on the other hand, the ones obtained with 30 and 40 rad/s are far from the other
curves. Hence, for the following, we take the value of 120 rad/s for the Fourier integral
upper limit.

We will compute displacements of the bridge by the Newmark-b method with an explicit
scheme and the asymptotic method projected in modal space. We will use an asymptotic
development of 29, 20, 15 and 10 terms in order to see their in#uence on the computing time.
The choice of the time step for the Newmark-b method with linear acceleration will
primarily depend on the smallest period who participates in the response. In this case,



TABLE 2

Frequencies and modal masses

Frequency (Hz) Period (s) Relative modal mass (%)

Mode 1 3)39 0)295 0)240
Mode 2 4)98 0)201 0)004
Mode 3 5)90 0)17 57)192
Mode 4 7)81 0)128 0)010
Mode 5 8)96 0)112 0)039
Mode 6 9)12 0)110 0)047
Mode 7 9)99 0)1 0)000
Mode 8 11)4 0)0877 0)000
Mode 9 12)6 0)0795 0)011
Mode 10 12)9 0)0776 0)092

Total"57)635

Figure 17. Choice of the upper limit of the integral: *s*, l"30 rad/s; ----m----, l"40 rad/s; *r*,
l"60 rad/s; ----.----, l"90 rad/s; *j*, l"120 rad/s.
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although a time step lower than 0)55¹
3

is su$cient to guarantee the stability of the method,
overall, a time step corresponding to ¹

3
/10 is appropriate. The El-Centro recording was

made for a time step of 0)02 s. To avoid the aliasing phenomenon (because 0)02/0)017"
1)17), we have thus taken a time step equal to 0)02/2"0)01 (equivalent to ¹

3
/17).

We "rst compute the bridge displacements using a Rayleigh damping equal to 5% for the
"rst three modes of the structure. Figures 18(a}e) give the vertical displacement at the center
of the bridge versus time for the two methods.

We note from those "gures that the solution obtained by the asymptotic method and the
Newmark-b method are in good agreement within the interval of analysis.



Figure 18. Vertical displacement at the center of the bridge with Rayleigh damping: *
3
*, Newmark; -----,

DAM. (a) 0(time(10; (b) 10(time(20; (c) 20(time(30; (d) 30(time(40; (e) 40(time(55.
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Figure 18. Continued.
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In the next example, we calculate displacements of the bridge by neglecting damping.
Figures 19(a}k) give the vertical displacement at the center of bridge versus time.

We note that during the "rst 5 s, the solution obtained with the Newmark-b method and
the asymptotic method are practically the same. Where there are strong non-linearities in
the loading, namely in the interval (5, 25) s, the solutions do not agree. To obtain a better
solution with the Newmark-b method and in order to get the same solution as the one
obtained with the asymptotic method, we have taken a time step equal to ¹

3
/170.

We will now examine computing time (excluding the time needs to estimate eigenvalues
and eigenvectors) and the number of steps required by both methods. In order to choose the
most adapted value for the tolerance needed to evaluate critical time for the asymptotic
method for di!erent orders of displacement series, we have taken several values and we
c
Figure 19. Vertical displacement at the center of the bridge (undamped case):*

3
*, Newmark; -----, DAM. (a)

0(time(5; (b) 5(time(10; (c) 10(time(15; (d) 15(time(20; (e) 20(time(25; (f ) 25(time(30; (g)
30(time(35; (h) 35(time(40; (i) 40(time(45; ( j) 45(time(50; (k) 50(time(55.
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Figure 19. Continued.
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Figure 19. Continued.
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Figure 19. Continued.
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selected the most suitable one which gives the critical time which remains inside the radius
of convergence. The results are presented in Tables 3}6.

We note from Tables 3 and 5 that the asymptotic method needed fewer time steps than
the Newmark-b method to obtain the solution. For the damped case, the Newmark-b
method is faster than the asymptotic method. However, for the undamped case and for the
same precision level, the asymptotic method with N"15 and 10 is faster than the method
of Newmark-b.

We note from Tables 4 and 6 that the asymptotic method is more time consuming for
order higher than 15. Table 4 indicates that the asymptotic method is more time consuming
for N"10 than 15, because with N"10, we have less coe$cients to be computed for the
loading but critical time will decrease; however, for N"15, we compute more coe$cients
for the loading but the critical time is larger and it means that we need less steps to obtain all
the solutions. Thus, an optimum order N would have to be found for computing less



TABLE 3

<arious time steps of the two computing methods: damped case

Method Time segment (s) Total number of step

DAM N"29, Mean Max Min
e"10~8 0)016511 0)070266 0)000001 3286
N"20, 0)02603 0)064336 0)000047 2077
e"10~6
N"15, 0)03555 0)061937 0)000132 1546
e"10~5
N"10, 0)02286 0)057136 0)000596 2406
e"10~5

Newmark (b"1/6) 0)01 5500

TABLE 4

CP; time: damped case

Method Time (CPU) Relative time

DAM N"29 1 h 14@ 24)7
N"20 23@ 7)67
N"15 10@ 3)33
N"10 11@ 3)67

Newmark (b"1/6) 3@ 1

TABLE 5

<arious time steps of the two computing methods: undamped case

Method Time segment (s) Total number of step

DAM N"29, Mean Max Min
e"10~18 0)005501 0)041827 0)000004 9964
N"20, 0)01691 0)04056 0)000014 3252

e"10~12
N"15, 0)02154 0)05612 0)000006 2552
e"10~9
N"10, 0)01544 0)04047 0)000118 3560
e"10~8

Newmark (b"1/6) 0)001 55 000

TABLE 6

CP; time: undamped case

Method Time (CPU) Relative time

DAM N"29 3 h 59@ 7)46
N"20 33@ 1)03
N"15 18@ 0)56
N"10 13@ 0)41

Newmark (b"1/6) 32@ 1
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coe$cients of the loading and less steps in order to minimize the computing time. The
tolerance taken is very small for the undamped case due to the strong amplitude of the
displacement curve. According to this parametric study, we can see that the optimum order
for this problem is N"15. We note that in Zahrouni's work [9], the suggested optimum
order is also 15.

5. CONCLUSION

In this paper, we have studied linear dynamic problems for arbitrary loading solved
using the asymptotic method. For the representation of an arbitrary loading, we
have started with the Fourier series. This approach is often applied for the periodic
functions. Unfortunately, in practice, we seldom have this kind of loading. We thus prefer
to take advantage of the Fourier integral which is an extension of the Fourier series
to unperiodic functions. We have shown that, using these two techniques, the asy-
mptotic method converges towards the exact solution. However, we have observed that,
exploiting the Fourier integral, we have saved computing time and increased also the
critical time compared to the Fourier series. Then, we have extended the asymptotic method
associated with the Fourier integral to study more complex problems such as seismic
analysis.

The results of the numerical analyses carried out for several examples have proved that
the asymptotic method gives a good approximation of the exact solution and it has a better
estimation of the response compared to the Newmark-b method. This is due to its ability to
capture the loading non-linearities. Another advantage of this method is that it requires
fewer time segments than the classical time integration schemes. The time segment length of
the asymptotic method is automatically computed and adapted according to the loading
variation. It decreases when these exist strong variations of the loading and it increases
when the loading becomes regular. According to examples presented in this paper, we
suggest an optimum order of 15 for the displacement series. As any numerical method,
the asymptotic method presents some disadvantages. This method is conditionally
stable and the representation of complex loading by using the Fourier integral is relatively
time consuming. Thus, we propose to approach the time segments of the loading linearly
in such a way that between two points, we will have f (t)"at#b. In this case, the time
step could be conditioned by the length of the time segment. This possibility would be
interesting to compare to the use of the Fourier integral when we consider computing
time. Another possibility is to carry out polynomial approximations for several segments of
time. For example, we can construct a quadratic approximation for two consecutive
segments.

The asymptotic method has already proved its e!ectiveness for static non-linear
problems. However, this method remains unexploded in non-linear dynamics. We believe
that it would be interesting to explore the asymptotic method in this domain.
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APPENDIX A: NOMENCLATURE

[C] damping matrix
MFN load vector
MF

i
N vector containing coe$cients i of the loading polynomial

[K] rigidity matrix
l upper limit of the Fourier integral
¸ length
[M] mass matrix
N polynomial order
R(t) residue
MR

i
N vector containing coe$cients i of the residue polynomial

ti
cr

critical time i
u displacement
uR velocity
u( acceleration
Mu

i
N vector containing coe$cients i of the displacement polynomial

Dt time step
e tolerance
t ; q time
X

n
frequency of the Fourier series

a
0
, a

n
, b

n
Fourier coe$cients
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